Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.10.16.562462

ABSTRACT

The large amount and diversity of viral genomic datasets generated by next-generation sequencing technologies poses a set of challenges for computational data analysis workflows, including rigorous quality control, adaptation to higher sample coverage, and tailored steps for specific applications. Here, we present V-pipe 3.0, a computational pipeline designed for analyzing next-generation sequencing data of short viral genomes. It is developed to enable reproducible, scalable, adaptable, and transparent inference of genetic diversity of viral samples. By presenting two large-scale data analysis projects, we demonstrate the effectiveness of V-pipe 3.0 in supporting sustainable viral genomic data science.

2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.11.02.22281825

ABSTRACT

During the COVID-19 pandemic, wastewater-based epidemiology has progressively taken a central role as a pathogen surveillance tool. Tracking viral loads and variant outbreaks in sewage offers advantages over clinical surveillance methods by providing unbiased estimates and enabling early detection. However, wastewater-based epidemiology poses new computational research questions that need to be solved in order for this approach to be implemented broadly and successfully. Here, we address the variant deconvolution problem, where we aim to estimate the relative abundances of genomic variants from next-generation sequencing data of a mixed wastewater sample. We introduce LolliPop, a computational method to solve the variant deconvolution problem by simultaneously solving least squares problems and kernel-based smoothing of relative variant abundances from wastewater time series sequencing data. We derive multiple approaches to compute confidence bands, and demonstrate the application of our method to data from the Swiss wastewater surveillance efforts.


Subject(s)
COVID-19
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.03.22.20041145

ABSTRACT

Background: The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is straining health systems around the world. Although the Chinese government implemented a number of severe restrictions on people's movement in an attempt to contain its local and international spread, the virus had already reached many areas of the world in part due to its potent transmissibility and the fact that a substantial fraction of infected individuals develop little or no symptoms at all. Following its emergence, the virus started to generate sustained transmission in neighboring countries in Asia, Western Europe, Australia, Canada and the United States, and finally in South America and Africa. As the virus continues its global spread, a clear and evidence-based understanding of properties and dynamics of the global transmission network of SARS-CoV-2 is essential to design and put in place efficient and globally coordinated interventions. Methods: We employ molecular surveillance data of SARS-CoV-2 epidemics for inference and comprehensive analysis of its global transmission network before the pandemic declaration. Our goal was to characterize the spatial-temporal transmission pathways that led to the establishment of the pandemic. We exploited a network-based approach specifically tailored to emerging outbreak settings. Specifically, it traces the accumulation of mutations in viral genomic variants via mutation trees, which are then used to infer transmission networks, revealing an up-to-date picture of the spread of SARS-CoV-2 between and within countries and geographic regions. Results and Conclusions: The analysis suggest multiple introductions of SARS-CoV-2 into the majority of world regions by means of heterogeneous transmission pathways. The transmission network is scale-free, with a few genomic variants responsible for the majority of possible transmissions. The network structure is in line with the available temporal information represented by sample collection times and suggest the expected sampling time difference of few days between potential transmission pairs. The inferred network structural properties, transmission clusters and pathways and virus introduction routes emphasize the extent of the global epidemiological linkage and demonstrate the importance of internationally coordinated public health measures.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL